3.287 \(\int \frac{x^5 (a+b \log (c x^n))}{(d+e x^2)^{3/2}} \, dx\)

Optimal. Leaf size=158 \[ -\frac{d^2 \left (a+b \log \left (c x^n\right )\right )}{e^3 \sqrt{d+e x^2}}-\frac{2 d \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^3}+\frac{\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^3}-\frac{8 b d^{3/2} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )}{3 e^3}+\frac{5 b d n \sqrt{d+e x^2}}{3 e^3}-\frac{b n \left (d+e x^2\right )^{3/2}}{9 e^3} \]

[Out]

(5*b*d*n*Sqrt[d + e*x^2])/(3*e^3) - (b*n*(d + e*x^2)^(3/2))/(9*e^3) - (8*b*d^(3/2)*n*ArcTanh[Sqrt[d + e*x^2]/S
qrt[d]])/(3*e^3) - (d^2*(a + b*Log[c*x^n]))/(e^3*Sqrt[d + e*x^2]) - (2*d*Sqrt[d + e*x^2]*(a + b*Log[c*x^n]))/e
^3 + ((d + e*x^2)^(3/2)*(a + b*Log[c*x^n]))/(3*e^3)

________________________________________________________________________________________

Rubi [A]  time = 0.218035, antiderivative size = 158, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {266, 43, 2350, 12, 1251, 897, 1153, 208} \[ -\frac{d^2 \left (a+b \log \left (c x^n\right )\right )}{e^3 \sqrt{d+e x^2}}-\frac{2 d \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^3}+\frac{\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^3}-\frac{8 b d^{3/2} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )}{3 e^3}+\frac{5 b d n \sqrt{d+e x^2}}{3 e^3}-\frac{b n \left (d+e x^2\right )^{3/2}}{9 e^3} \]

Antiderivative was successfully verified.

[In]

Int[(x^5*(a + b*Log[c*x^n]))/(d + e*x^2)^(3/2),x]

[Out]

(5*b*d*n*Sqrt[d + e*x^2])/(3*e^3) - (b*n*(d + e*x^2)^(3/2))/(9*e^3) - (8*b*d^(3/2)*n*ArcTanh[Sqrt[d + e*x^2]/S
qrt[d]])/(3*e^3) - (d^2*(a + b*Log[c*x^n]))/(e^3*Sqrt[d + e*x^2]) - (2*d*Sqrt[d + e*x^2]*(a + b*Log[c*x^n]))/e
^3 + ((d + e*x^2)^(3/2)*(a + b*Log[c*x^n]))/(3*e^3)

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2350

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Wit
h[{u = IntHide[(f*x)^m*(d + e*x^r)^q, x]}, Dist[a + b*Log[c*x^n], u, x] - Dist[b*n, Int[SimplifyIntegrand[u/x,
 x], x], x] /; ((EqQ[r, 1] || EqQ[r, 2]) && IntegerQ[m] && IntegerQ[q - 1/2]) || InverseFunctionFreeQ[u, x]] /
; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && IntegerQ[2*q] && ((IntegerQ[m] && IntegerQ[r]) || IGtQ[q, 0])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 897

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> With[{q = Denominator[m]}, Dist[q/e, Subst[Int[x^(q*(m + 1) - 1)*((e*f - d*g)/e + (g*x^q)/e)^n*((c*d^2 - b*d
*e + a*e^2)/e^2 - ((2*c*d - b*e)*x^q)/e^2 + (c*x^(2*q))/e^2)^p, x], x, (d + e*x)^(1/q)], x]] /; FreeQ[{a, b, c
, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegersQ[n,
 p] && FractionQ[m]

Rule 1153

Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(
d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 -
b*d*e + a*e^2, 0] && IGtQ[p, 0] && IGtQ[q, -2]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^5 \left (a+b \log \left (c x^n\right )\right )}{\left (d+e x^2\right )^{3/2}} \, dx &=-\frac{d^2 \left (a+b \log \left (c x^n\right )\right )}{e^3 \sqrt{d+e x^2}}-\frac{2 d \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^3}+\frac{\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^3}-(b n) \int \frac{-8 d^2-4 d e x^2+e^2 x^4}{3 e^3 x \sqrt{d+e x^2}} \, dx\\ &=-\frac{d^2 \left (a+b \log \left (c x^n\right )\right )}{e^3 \sqrt{d+e x^2}}-\frac{2 d \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^3}+\frac{\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^3}-\frac{(b n) \int \frac{-8 d^2-4 d e x^2+e^2 x^4}{x \sqrt{d+e x^2}} \, dx}{3 e^3}\\ &=-\frac{d^2 \left (a+b \log \left (c x^n\right )\right )}{e^3 \sqrt{d+e x^2}}-\frac{2 d \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^3}+\frac{\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^3}-\frac{(b n) \operatorname{Subst}\left (\int \frac{-8 d^2-4 d e x+e^2 x^2}{x \sqrt{d+e x}} \, dx,x,x^2\right )}{6 e^3}\\ &=-\frac{d^2 \left (a+b \log \left (c x^n\right )\right )}{e^3 \sqrt{d+e x^2}}-\frac{2 d \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^3}+\frac{\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^3}-\frac{(b n) \operatorname{Subst}\left (\int \frac{-3 d^2-6 d x^2+x^4}{-\frac{d}{e}+\frac{x^2}{e}} \, dx,x,\sqrt{d+e x^2}\right )}{3 e^4}\\ &=-\frac{d^2 \left (a+b \log \left (c x^n\right )\right )}{e^3 \sqrt{d+e x^2}}-\frac{2 d \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^3}+\frac{\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^3}-\frac{(b n) \operatorname{Subst}\left (\int \left (-5 d e+e x^2-\frac{8 d^2}{-\frac{d}{e}+\frac{x^2}{e}}\right ) \, dx,x,\sqrt{d+e x^2}\right )}{3 e^4}\\ &=\frac{5 b d n \sqrt{d+e x^2}}{3 e^3}-\frac{b n \left (d+e x^2\right )^{3/2}}{9 e^3}-\frac{d^2 \left (a+b \log \left (c x^n\right )\right )}{e^3 \sqrt{d+e x^2}}-\frac{2 d \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^3}+\frac{\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^3}+\frac{\left (8 b d^2 n\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{d}{e}+\frac{x^2}{e}} \, dx,x,\sqrt{d+e x^2}\right )}{3 e^4}\\ &=\frac{5 b d n \sqrt{d+e x^2}}{3 e^3}-\frac{b n \left (d+e x^2\right )^{3/2}}{9 e^3}-\frac{8 b d^{3/2} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )}{3 e^3}-\frac{d^2 \left (a+b \log \left (c x^n\right )\right )}{e^3 \sqrt{d+e x^2}}-\frac{2 d \sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{e^3}+\frac{\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 e^3}\\ \end{align*}

Mathematica [A]  time = 0.178271, size = 160, normalized size = 1.01 \[ \frac{-24 a d^2-12 a d e x^2+3 a e^2 x^4-3 b \left (8 d^2+4 d e x^2-e^2 x^4\right ) \log \left (c x^n\right )+24 b d^{3/2} n \log (x) \sqrt{d+e x^2}-24 b d^{3/2} n \sqrt{d+e x^2} \log \left (\sqrt{d} \sqrt{d+e x^2}+d\right )+14 b d^2 n+13 b d e n x^2-b e^2 n x^4}{9 e^3 \sqrt{d+e x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^5*(a + b*Log[c*x^n]))/(d + e*x^2)^(3/2),x]

[Out]

(-24*a*d^2 + 14*b*d^2*n - 12*a*d*e*x^2 + 13*b*d*e*n*x^2 + 3*a*e^2*x^4 - b*e^2*n*x^4 + 24*b*d^(3/2)*n*Sqrt[d +
e*x^2]*Log[x] - 3*b*(8*d^2 + 4*d*e*x^2 - e^2*x^4)*Log[c*x^n] - 24*b*d^(3/2)*n*Sqrt[d + e*x^2]*Log[d + Sqrt[d]*
Sqrt[d + e*x^2]])/(9*e^3*Sqrt[d + e*x^2])

________________________________________________________________________________________

Maple [F]  time = 0.408, size = 0, normalized size = 0. \begin{align*} \int{{x}^{5} \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) \left ( e{x}^{2}+d \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(a+b*ln(c*x^n))/(e*x^2+d)^(3/2),x)

[Out]

int(x^5*(a+b*ln(c*x^n))/(e*x^2+d)^(3/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*log(c*x^n))/(e*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.60782, size = 818, normalized size = 5.18 \begin{align*} \left [\frac{12 \,{\left (b d e n x^{2} + b d^{2} n\right )} \sqrt{d} \log \left (-\frac{e x^{2} - 2 \, \sqrt{e x^{2} + d} \sqrt{d} + 2 \, d}{x^{2}}\right ) -{\left ({\left (b e^{2} n - 3 \, a e^{2}\right )} x^{4} - 14 \, b d^{2} n + 24 \, a d^{2} -{\left (13 \, b d e n - 12 \, a d e\right )} x^{2} - 3 \,{\left (b e^{2} x^{4} - 4 \, b d e x^{2} - 8 \, b d^{2}\right )} \log \left (c\right ) - 3 \,{\left (b e^{2} n x^{4} - 4 \, b d e n x^{2} - 8 \, b d^{2} n\right )} \log \left (x\right )\right )} \sqrt{e x^{2} + d}}{9 \,{\left (e^{4} x^{2} + d e^{3}\right )}}, \frac{24 \,{\left (b d e n x^{2} + b d^{2} n\right )} \sqrt{-d} \arctan \left (\frac{\sqrt{-d}}{\sqrt{e x^{2} + d}}\right ) -{\left ({\left (b e^{2} n - 3 \, a e^{2}\right )} x^{4} - 14 \, b d^{2} n + 24 \, a d^{2} -{\left (13 \, b d e n - 12 \, a d e\right )} x^{2} - 3 \,{\left (b e^{2} x^{4} - 4 \, b d e x^{2} - 8 \, b d^{2}\right )} \log \left (c\right ) - 3 \,{\left (b e^{2} n x^{4} - 4 \, b d e n x^{2} - 8 \, b d^{2} n\right )} \log \left (x\right )\right )} \sqrt{e x^{2} + d}}{9 \,{\left (e^{4} x^{2} + d e^{3}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*log(c*x^n))/(e*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

[1/9*(12*(b*d*e*n*x^2 + b*d^2*n)*sqrt(d)*log(-(e*x^2 - 2*sqrt(e*x^2 + d)*sqrt(d) + 2*d)/x^2) - ((b*e^2*n - 3*a
*e^2)*x^4 - 14*b*d^2*n + 24*a*d^2 - (13*b*d*e*n - 12*a*d*e)*x^2 - 3*(b*e^2*x^4 - 4*b*d*e*x^2 - 8*b*d^2)*log(c)
 - 3*(b*e^2*n*x^4 - 4*b*d*e*n*x^2 - 8*b*d^2*n)*log(x))*sqrt(e*x^2 + d))/(e^4*x^2 + d*e^3), 1/9*(24*(b*d*e*n*x^
2 + b*d^2*n)*sqrt(-d)*arctan(sqrt(-d)/sqrt(e*x^2 + d)) - ((b*e^2*n - 3*a*e^2)*x^4 - 14*b*d^2*n + 24*a*d^2 - (1
3*b*d*e*n - 12*a*d*e)*x^2 - 3*(b*e^2*x^4 - 4*b*d*e*x^2 - 8*b*d^2)*log(c) - 3*(b*e^2*n*x^4 - 4*b*d*e*n*x^2 - 8*
b*d^2*n)*log(x))*sqrt(e*x^2 + d))/(e^4*x^2 + d*e^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5*(a+b*ln(c*x**n))/(e*x**2+d)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \log \left (c x^{n}\right ) + a\right )} x^{5}}{{\left (e x^{2} + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*log(c*x^n))/(e*x^2+d)^(3/2),x, algorithm="giac")

[Out]

integrate((b*log(c*x^n) + a)*x^5/(e*x^2 + d)^(3/2), x)